Introduction to DSP – Spring 2010

Instructor: 蔡尚澤 (Shang-Ho Tsai)
Office hour: TBD
Office: EE734
Email: shanghot@mail.nctu.edu.tw

Department of Electrical Engineering
National Chiao Tung University
Course Goals

• This is an introductory course on digital signal processing covering: Z Transform, sampling theory, filter design, discrete Fourier transform, and techniques for time domain and frequency domain analysis
General Information

- **Time:** 2EF5B
- **Place:** EE209
- **Textbook:**
- **References:**
 - Alan V. Oppenheim and Ronald W. Schafer, “Digital Signal Processing”
 - Prof. Yuan-Pei Lin’s course slides
- **Course slides:**
 - Slides will be put on website before class
 - Website will be noticed via email
Textbook

Digital Filters
and
Signal Processing
THIRD EDITION

with MATLAB® Exercises

Leland B. Jackson
Course Style and Grading

• Course style
 ▪ Slides with electronics tablet
 ▪ Some homeworks require the use of Matlab

• Grading
 ▪ Homework 20% (Turn in at the beginning of the class: half points will be deducted per one-day delay)
 ▪ Midterm I 25%
 ▪ Midterm II 25%
 ▪ Final 30%
TAs and Helps

• 霹靂博: 林普暄
 ▪ Course rehearsal
 ▪ Office hours: TBD

• TAs: 洪英哲 and 張瑞慶
 ▪ Homeworks and grading
 ▪ Office hours: TBD

• Office: 815
• Tel: 54472
Course Outline (1/3)

• Discrete-time signals and systems
 ▪ Discrete-time signals and sequences
 ▪ Discrete-time systems and filters
 ▪ Stability and Causality

• The z transform
 ▪ Inverse z transform
 ▪ Properties

• Input/Output relationship
 ▪ System function and frequency response
 ▪ Difference equations
 ▪ Geometric evaluations
Course Outline (2/3)

- Discrete-time networks
 - Flow graph properties
 - Network structures
 - Properties

- Sampling and Fourier analysis
 - DTFT
 - Properties
 - Sampling

- DFT
 - Properties
 - Zero padding
 - Windows in spectrum analysis
Course Outline (3/3)

- FFT
 - Decimation in frequency
 - Decimation in time
- IIR filter design
 - Classical filter design
 - Impulse-invariant transformation
 - Bilinear transformation
- FIR filter design
 - Filter design by windowing
 - Frequency-sampling technique
 - Equiripple designs
 - Maximumally-flat designs
Prerequisites

- Prerequisites
 - Signals and Systems